首页>>登录,我要注册

胸心外科

基于机器学习的心脏再同步治疗患者的死亡率预测

作者:xiangting 来源:Medsci梅斯 日期:2020-01-12
导读

这项研究目标是建立一种基于机器学习(ML)的风险分层系统,从而根据心脏再同步治疗(CRT)患者的植入前参数预测1年、2年、3年、4年和5年全因死亡率。

这项研究目标是建立一种基于机器学习(ML)的风险分层系统,从而根据心脏再同步治疗(CRT)患者的植入前参数预测1年、2年、3年、4年和5年全因死亡率。

使用包含1510例CRT植入患者的回顾性数据库对多个ML模型进行训练,以预测1至5年全因死亡率。选择了33个植入前临床特征来训练模型。在一个包含158例患者的独立队列中,对表现最佳的模型[SEMMELWEIS-CRT评分(对CRT植入患者进行机器学习的个体化死亡风险评估)]和既往评分(西雅图心衰模型、VALID-CRT、EAARN、ScREEN和CRT评分)进行了测试。5年的随访期间,训练队列有805例死亡(53%),测试队列有80例死亡(51%)。在经过训练的分类模型中,随机森林的表现最佳。对于预测1年、2年、3年、4年和5年死亡率,SEMMELWEIS-CRT评分的受试者操作特征曲线下面积分别为0.768 (95% CI: 0.674–0.861; P<0.001)、0.793(95%CI:0.718-0.867; P<0.001)、0.785(95%CI:0.711-0.859; P<0.001)、0.776(95%CI:0.703-0.849; P<0.001)和0.803(95%CI:0.733-0.872;P <0.001)。该模型的判别能力优于其他评分。

SEMMELWEIS-CRT评分(可在semmelweiscrtscore.com上获得)显示出良好的判别力,可以预测CRT患者的全因死亡率,并且优于现有的风险评分。通过获取预测因子的非线性关联,使用ML方法有助于CRT植入最佳候选者的筛选和预后预测。

分享:

相关文章

    评论

    我要跟帖
    发表
    回复 小鸭梨
    发表
    //站内统计//百度统计//谷歌统计//站长统计
    *我要反馈: 姓 名: 邮 箱:
    Baidu
    map