呼吸

细胞外囊泡研究进展播报:肺疾病中的新型传播者

作者:孟爱宏、高思洁 来源:南山呼吸 日期:2020-11-20
导读

         肺是人体中血管密度最高的器官。因此,肺内皮细胞显著促进包括外泌体、微囊泡和凋亡小体的细胞外囊泡(EVs)循环。除内皮外,EVs还有可能来自肺泡巨噬细胞、纤维细胞和上皮细胞。

关键字:  细胞外囊泡 | 肺 

        01

        细胞外囊泡

        是人体中血管密度最高的器官。因此,肺内皮细胞显著促进包括外泌体、微囊泡和凋亡小体的细胞外囊泡(EVs)循环。除内皮外,EVs还有可能来自肺泡巨噬细胞、纤维细胞和上皮细胞。由于EVs包裹载体分子,例如miRNA、mRNA和蛋白质,因此这些细胞间的通讯器有助于深入了解供体细胞的健康和疾病状况,实现生物体内细胞之间或物种之间的通讯[1,2],并可作为肺部疾病进展的有用生物标记;此外,并非细胞分泌的所有囊泡都有功能或在某种生物过程中起作用。

        02

        分 类

        一些研究将EVs分为两大类:I)外泌体,定义为通过多囊体的胞吐作用释放囊泡;II)囊泡,定义为由质膜组装和释放的囊泡[3]。

        然而,最近的研究根据囊泡的大小及其形成方式将EVs分为外泌体、微囊泡、微粒或凋亡小体[4-10]。

        1. 外泌体

        是一种小的EVs,直径范围在30~150 nm之间,起源于几乎所有细胞类型多囊体(MVB)的内囊泡。典型的外泌体被磷脂膜包围,该膜含有其细胞起源特征的脂质[11,12],具有高水平的胆固醇、鞘磷脂、神经酰胺和耐洗涤剂的膜结构域(脂质筏)[13,14]。外泌体的另一个显著特征是四跨膜蛋白的存在,包括CD9、CD63、CD81和CD82 [15]。大量研究表明,外泌体中存在核酸载体[15-18],在受体细胞中释放具有功能活性。

        2. 微囊

        微囊(MVs)或微粒(MPs)(50~1000 nm)是通过活细胞的质膜直接向外发芽并释放膜微绒毛而分泌的[19,20]。

        3. 凋亡小体

        凋亡小体(也称为“凋亡水泡”或“凋亡囊泡”)代表在细胞凋亡过程中由质膜的向外发芽、起泡或破裂而释放的EV类型。当这些囊泡被抗原提呈细胞或被邻近细胞摄取时,可能导致抗炎或耐受性反应[21-23]。

        03

        EVs在肺部疾病发病机理中的作用

        表1 各种肺部并发症中潜在的细胞外囊泡标志物

        *内皮衍生MP(EMP),血小板来源MP(PMP),白细胞来源MP(LMP)

        04

        EVs在肺部疾病中的治疗潜力

        05

        总 结

        总之,EVs是新兴的多种肺部疾病的重要组成部分。很明显,EVs代表了一个异质种群,其组成和载体都大不相同。EVs是一个快速发展的领域,用于EVs的分离和分类方法仍然缺乏统一性。例如,肺癌的许多亚型在分子病理学、治疗和预后方面均存在差异[77]。这种异质性对于几乎所有的肺部疾病都是确实存在的,将来评估EVs作为生物标志物和治疗药物的研究应该诠释阐明这些差异。这一有应用前景的研究领域预计可为数以百万计遭受肺部疾病折磨的患者带来希望,尽管这些疾病采用当今的标准治疗方法仍无法治愈。

        1. Hong BS, Cho JH, Kim H,et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells.BMC Genomics 2009;10:556

        2. Desrochers LM, Antonyak MA, Cerione RA. Extracellular Vesicles: Satellites of Information Transfer in Cancer and Stem Cell Biology. Dev Cell 2016;37:301–309

        3. Meldolesi J. Ectosomes and exosomes-two extracellular vesicles that differ only in some details. Biochem Mol Bio J 2016;2

        4. Owens AP 3rd, Mackman N. Microparticles in hemostasis and thrombosis.Circ Res 2011;108:1284–1297

        5. Crescitelli R, Lasser C, Szabo TG,et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2013;2:20677

        6. van der Pol E, Boing AN, Gool EL, et al. Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost 2016;14:48–56

        7. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373–383

        8. Czernek L, Duchler M. Functions of Cancer-Derived Extracellular Vesicles in Immunosuppression. Arch Immunol Ther Exp (Warsz) 2017;65:311–323

        9. Choi DS, Kim DK, Kim YK, et al. Proteomics of extracellular vesicles: Exosomes and ectosomes. Mass Spectrom Rev 2015;34:474–490

        10. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015;25:364–372

        11. Mignot G, Roux S, Thery C, et al. Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med 2006;10:376–388

        12. Frydrychowicz M, Kolecka-Bednarczyk A, Madejczyk M, et al.Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand J Immunol 2015;81:2–10

        13. Wubbolts R, Leckie RS, Veenhuizen PT,et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 2003;278:10963–10972

        14. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009;9:581–593

        15. Bobrie A, Colombo M, Raposo G, et al. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 2011;12:1659–1668

        16. Rana S, Malinowska K, Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013;15:281–295

        17. Gezer U, Ozgur E, Cetinkaya M, et al. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int 2014;38:1076–1079

        18. Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C,et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014;28:3–13

        19. Rechavi O, Goldstein I, Kloog Y. Intercellular exchange of proteins: the immune cell habit of sharing. FEBS Lett 2009;583:1792–1799

        20.Mincheva-Nilsson L, Baranov V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol 2014; 72:440–457

        21.Lai FW,Lichty BD,Bowdish DM. Microvesicles: ubiquitous contributors to infection and immunity. J Leukoc Biol 2015;97:237–245

        22. Schiller M, Bekeredjian-Ding I, Heyder P,et al. Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ 2008;15:183–191

        23. Cocca BA, Cline AM, Radic MZ. Blebs and apoptotic bodies are B cell autoantigens. J Immunol 2002;169:159–166

        24. Takahashi T, Kubo H. The role of microparticles in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2014;9:303–314

        25.Tokes-Fuzesi M, Ruzsics I, RidegO,et al. Role of microparticles derived from monocytes, endothelial cells and platelets in the exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2018;13:3749–3757

        26. Thomashow MA, Shimbo D, Parikh MA, et al. Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease study. Am J Respir Crit Care Med 2013;188:60–68

        27. Strulovici-Barel Y, Staudt MR, Krause A, et al. Persistence of circulating endothelial microparticles in COPD despite smoking cessation. Thorax 2016; 71:1137–1144

        28. Takahashi T, Kobayashi S, Fujino N, et al. Annual FEV1 changes and numbers of circulating endothelial microparticles in patients with COPD: a prospective study. BMJ Open 2014;4:e004571

        29. Takahashi T, Kobayashi S, Fujino N, et al. Increased circulating endothelial microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility. Thorax 2012;67:1067–1074

        30. Serban KA, Rezania S, Petrusca DN, et al. Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci Rep 2016;6:31596

        31.Visovatti SH, Hyman MC, Bouis D,et al. Increased CD39 nucleotidase activity on microparticles from patients with idiopathic pulmonary arterial hypertension. PLoS One 2012;7:e40829

        32.Ferrer E, Dunmore BJ, Hassan D,et al. A Potential Role for Exosomal Translationally Controlled Tumor Protein Export in Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2018;59:467–478

        33. Zhao L, Luo H, Li X,et al. Exosomes Derived from Human Pulmonary Artery Endothelial Cells Shift the Balance between Proliferation and Apoptosis of Smooth Muscle Cells. Cardiology 2017;137:43–53

        34. Nadaud S, Poirier O, Girerd B, et al. Small platelet microparticle levels are increased in pulmonary arterial hypertension. Eur J Clin Invest 2013;43:64–71

        35. Amabile N, Heiss C, Real WM,et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med 2008;177:1268–1275

        36. Amabile N, Heiss C, Chang V,et al. Increased CD62e(+) endothelial microparticle levels predict poor outcome in pulmonary hypertension patients. J Heart Lung Transplant 2009;28:1081–1086

        37. Rose JA, Wanner N, Cheong HI,et al. Flow Cytometric Quantification of Peripheral Blood Cell beta-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension. PLoS One 2016;11:e0156940

        38. Bakouboula B, Morel O, Faure A, et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med 2008;177:536–543

        39. Diehl P, Aleker M, Helbing T,et al. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis 2011;31:173–179

        40. Mazzeo C, Canas JA, Zafra MP,et al. Exosome secretion by eosinophils: A possible role in asthma pathogenesis. J Allergy Clin Immunol 2015;135:1603–1613

        41.Canas JA, Sastre B, Rodrigo-Munoz JM,et al. Eosinophil-derived exosomes contribute to asthma remodelling by activating structural lung cells. Clin Exp Allergy 2018;48:1173–1185

        42.Torregrosa Paredes P, Esser J, Admyre C, et al. Bronchoalveolarlavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy 2012;67:911–919

        43. Hough KP, Trevor JL, Strenkowski JG, et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol 2018;18:54–64

        44. Hough KP, Wilson LS, Trevor JL, et al. Unique Lipid Signatures of Extracellular Vesicles from the Airways of Asthmatics. Sci Rep 2018;8:10340

        45. Rahman MA, Barger JF, Lovat F,et al. Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget 2016;7:54852–54866

        46. Zhang R, Xia Y, Wang Z,et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 2017;490:406–414

        47. Guervilly C, Lacroix R, Forel JM,et al. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care 2011; 15:R31

        48. Mitra S, Exline M, Habyarimana F,et al. Microparticulate Caspase 1 Regulates Gasdermin D and Pulmonary Vascular Endothelial Cell Injury. Am J Respir Cell Mol Biol 2018; 59:56–64

        49. Kerr NA, de Rivero Vaccari JP, Umland O,et al. Human Lung Cell Pyroptosis Following Traumatic Brain Injury. Cells 2019;8:69

        50. Bastarache JA, Fremont RD, Kropski JA,et al. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2009;297:L1035–L1041

        51. Lashin HMS, Nadkarni S, Oggero S, Jones HR, Knight JC, Hinds CJ, Perretti M. Microvesicle Subsets in Sepsis Due to Community Acquired Pneumonia Compared to Faecal Peritonitis. Shock. 2018;49:393–401

        52.Dalli J, Norling LV, Montero-Melendez T, et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med 2014;6:27–42

        53. Kim YS, Kim JY, Cho R,et al. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med 2017;49:e284

        54. Lee C, Mitsialis SA, Aslam M,et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 2012;126:2601–2611

        55.Chen JY,An R, Liu ZJ,et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin 2014;35:1121–1128

        56. Hogan SE, Rodriguez Salazar MP, Cheadle J,et al.Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2019;316:L723–L737

        57.Aliotta JM, Pereira M, Wen S,et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 2016;110:319–330

        58. Aliotta JM, Pereira M, Wen S, et al. Bone Marrow Endothelial Progenitor Cells Are the Cellular Mediators of Pulmonary Hypertension in the Murine Monocrotaline Injury Model. Stem Cells Transl Med 2017;6:1595–1606

        59.Belik D, Tsang H, Wharton J,et al. Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. J Biomed Sci 2016;23:4

        60. Du YM, Zhuansun YX, Chen R,et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 2018;363:114–120

        61. de Castro LL, Xisto DG, Kitoko JZ,et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther 2017;8:151

        62. Cruz FF, Borg ZD, Goodwin M, et al. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Transl Med 2015;4:1302–1316

        63. Xie G, Yang H, Peng X,et al. Mast cell exosomes can suppress allergic reactions by binding to IgE. J Allergy Clin Immunol 2018;141:788–791

        64. Cruz FF, Borg ZD, Goodwin M, et al. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice. Stem Cells Transl Med 2015;4:1302–1316

        65. Ding FX, Liu B, Zou WJ,et al. Pseudomonas aeruginosaderived exosomes ameliorates allergic reactions via inducing the Treg response in asthma.Pediatr Res 2018;84:125–133

        66. Fang SB, Zhang HY, Wang C, et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J Extracell Vesicles 2020;9:1723260

        67. Morse MA, Garst J, Osada T, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 2005;3:9

        68. Zhu YG, Feng XM, Abbott J,et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014;32:116–125

        69. Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015;6:8472

        70. Morrison TJ, Jackson MV, Cunningham EK,et al. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am J Respir Crit Care Med 2017;196:1275–1286

        71. Shah T, Qin S, Vashi M,et al. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome. Clin Transl Med 2018;7:19

        72. Potter DR, Miyazawa BY, Gibb SL, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. J Trauma Acute Care Surg 2018;84:245–256

        73. Park J, Kim S, Lim H,et al. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 2019;74:43–50

        74. Loy H, Kuok DIT, Hui KPY,et al. Therapeutic Implications of Human Umbilical Cord Mesenchymal Stromal Cells in Attenuating Influenza A(H5N1) Virus-Associated Acute Lung Injury. J Infect Dis 2019;219:186–196

        75. Wu X, Liu Z, Hu L, Gu W, et al. Exosomes derived from endothelial progenitor cells ameliorate acute lung injury by transferring miR-126. Exp Cell Res 2018;370:13–23

        76. Ju Z, Ma J, Wang C,et al. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.Inflammation 2017;40:486–496

        77. Inamura K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front Oncol 2017;7:193

        目前研究表明细胞外囊泡在哮喘、慢性阻塞性肺病、急性肺损伤/急性呼吸窘迫综合征等肺部炎症性疾病的发展中发挥重要作用并具有潜在的治疗价值。

        MCC号Xo920082044有效期2021-08-17,资料过期,视同作废。

分享:

相关文章

评论

我要跟帖
发表
回复 小鸭梨
发表

copyright©金宝搏网站登录技巧 版权所有,未经许可不得复制、转载或镜像

京ICP证120392号  京公网安备110105007198  京ICP备10215607号-1  (京)网药械信息备字(2022)第00160号
//站内统计 //百度统计 //谷歌统计 //站长统计
*我要反馈: 姓    名: 邮    箱:
Baidu
map