近日,Skoltech研究所的科学家们设计了一种新的基于机器学习的方法,用于检测心房颤动驱动器,即被认为会导致最常见类型的心律不齐的心肌小斑块。据美国心脏协会称,这种方法可能导致更有效的针对性医疗干预,以治疗估计影响全球3300万人的疾病。 心房颤动(AF)的背后机制尚不清楚,AF是一种异常的心律,与心力衰竭和中风的风险增加有关。研究表明,它可能是由折返性房颤驱动引起的,并导致房颤反复发作,这是
近日,Skoltech研究所的科学家们设计了一种新的基于机器学习的方法,用于检测“心房颤动驱动器”,即被认为会导致最常见类型的心律不齐的心肌小斑块。据美国心脏协会称,这种方法可能导致更有效的针对性医疗干预,以治疗估计影响全球3300万人的疾病。
心房颤动(AF)的背后机制尚不清楚,AF是一种异常的心律,与心力衰竭和中风的风险增加有关。研究表明,它可能是由折返性房颤驱动引起的,并导致房颤反复发作,这是导致重复性心律失常的高度局部原因。目前针对这种症状可以通过外科手术处理以减轻病情,甚至恢复心脏的正常功能。
(图片来源: Pavel Odinev / Skoltech)
为了找到这些可折返的AF驱动器以进行后续处理,医生使用了多电极映射技术,该技术使他们能够记录心脏内部的多个电描记图(通过导管完成)并在心房内建立电活动图。但是,这种技术的临床应用通常会在找不到现有的AF驾驶员时产生很多假阴性,而在检测到真正没有驱动器的情况下会产生很多假阳性。
最近,研究人员利用机器学习算法来解释ECG以寻找房颤。但是,这些算法需要带有驱动器真实位置的标记数据,并且多电极映射的准确性不足。这项新研究的作者是由Skoltech计算与数据密集型科学与工程中心(CDISE)的Dmitry Dylov和俄亥俄州立大学的Vadim Fedorov共同牵头的,他们使用了高分辨率近红外光学映射(NIOM)找到自动对焦驱动器并坚持使用它作为培训参考。
“ NIOM基于穿透力强的红外光信号,因此可以记录心肌内的电活动,而传统的临床电极只能测量表面上的信号。此外,该特性还具有出色的光学分辨率和光学映射如果您想可视化并了解电信号在心脏组织中的传播。” Dmitry Dylov说。
该团队在十一只被植入人体的心脏上测试了他们的方法,这些心脏都是为研究目的而死后捐赠的。研究人员同时对心脏中诱发的AF发作进行了光学和多电极映射。 ML模型的确可以从多电极映射中有效地解释电描记图,以定位AF驱动器,其准确性高达81%。他们认为,经过NIOM验证的更大的训练数据集可以改善基于机器学习的算法,足以使其成为临床实践中的补充工具。(生物谷 Bioon.com)
资讯出处:Machine learning helps pinpoint sources of the most common cardiac arrhythmia
原始出处:Alexander M. Zolotarev et al.Optical Mapping-Validated Machine Learning Improves Atrial Fibrillation Driver Detection by Multi-Electrode Mapping,Circulation: Arrhythmia and Electrophysiology(2020). DOI: 10.1161/CIRCEP.119.008249
copyright© 版权所有,未经许可不得复制、转载或镜像
京ICP证120392号 京公网安备110105007198 京ICP备10215607号-1 (京)网药械信息备字(2022)第00160号