骨科

European Radiology:深度学习,让平片快速分类骨肿瘤成为可能!

作者:佚名 来源:MedSci梅斯 日期:2022-01-17
导读

          骨肿瘤是导致20岁以下的癌症患者死亡的第三大原因。根据2020年公布的世界卫生组织第五次骨肿瘤分类,骨肿瘤被分为良性、中间型或恶性。不同类型的骨肿瘤有不同的生物学行为。良性肿瘤通常比较稳定,通常决定采用刮除术或只要求随访或局部刮除。中间型肿瘤会有局部侵袭性,通常会选择更激进的治疗方法来防止复发。恶性肿瘤由于具有侵袭性生物学行为和远处转移的概率,因此需要综合治疗(如手术、化疗和放疗)。因此,骨肿瘤的鉴别诊断对临床决策至关重要。

关键字:  骨肿瘤 

        骨肿瘤是导致20岁以下的癌症患者死亡的第三大原因。根据2020年公布的世界卫生组织第五次骨肿瘤分类,骨肿瘤被分为良性、中间型或恶性。不同类型的骨肿瘤有不同的生物学行为。良性肿瘤通常比较稳定,通常决定采用刮除术或只要求随访或局部刮除。中间型肿瘤会有局部侵袭性,通常会选择更激进的治疗方法来防止复发。恶性肿瘤由于具有侵袭性生物学行为和远处转移的概率,因此需要综合治疗(如手术、化疗和放疗)。因此,骨肿瘤的鉴别诊断对临床决策至关重要。

        基于数据驱动的机器学习和深度学习(DL)技术已被广泛研究,现阶段已用于临床的多个领域。由于骨肿瘤的发病率相对较低,十分缺乏关于DL应用于骨肿瘤的相关研究。此外,关于平片上的骨肿瘤的DL研究更少。

        近日,发表在European Radiology杂志的一项研究评估了DL在鉴别良性、恶性和中间型骨肿瘤方面的能力,并将DL与放射科医生的诊断水平进行了比较,为临床快速准确的评估骨肿瘤提供了技术支持。

        本项回顾性研究收集了2012年至2019年间经病理确诊的骨肿瘤的数据。构建了深度学习和机器学习融合模型,利用病变的常规X线片和潜在的相关临床数据将肿瘤分类为良性、恶性或中间型。比较了五位放射科医生使用和不使用该模型的诊断性能。使用曲线下面积(AUC)来评估诊断性能。

        共有643名患者(中位年龄,21岁;四分位数范围,12-38岁;244名女性)的982张X线片被纳入最终评估。在测试组中,二元类别分类任务中,良性/非良性、恶性/非恶性和中度/非中度的放射学分类模型的AUC分别为0.846、0.827和0.820;融合模型的AUC分别为0.898、0.894和0.865。在三类分类任务中,放射学模型的宏观平均AUC为0.813,而融合模型的宏观平均AUC为0.872。在观察测试中,所有放射科医生的平均宏观平均AUC为0.819。在三类分类融合模型的支持下,宏观AUC提高了0.026。

        本研究开发了一个融合了放射学和临床信息的模型用以良性、中间型和恶性肿瘤的鉴别。事实证明,与放射科医生相比,该模型在鉴别诊断方面十分有潜力。该模型可以帮协助临床进行患者的早期风险评估,并指导患者进行个性化治疗。

分享:

相关文章

评论

我要跟帖
发表
回复 小鸭梨
发表

copyright©金宝搏网站登录技巧 版权所有,未经许可不得复制、转载或镜像

京ICP证120392号  京公网安备110105007198  京ICP备10215607号-1  (京)网药械信息备字(2022)第00160号
//站内统计 //百度统计 //谷歌统计 //站长统计
*我要反馈: 姓    名: 邮    箱:
Baidu
map