人类CC趋化因子受体5(CCR5)是一种G蛋白偶联受体(GPCR),其在炎症发生过程中扮演着关键角色,同时还参与到了癌症、HIV和COVID-19的发病过程中,尽管其作为一种药物靶点非常重要,但CCR5的分子激活机制,即趋化因子饥激动剂如何通过受体来传递激活信号,目前研究人员并不清楚。位于许多免疫细胞表面的趋化因子受体在细胞功能发挥上扮演着关键角色,而趋化因子是一类能结合这些受体并控制白细胞运动
人类CC趋化因子受体5(CCR5)是一种G蛋白偶联受体(GPCR),其在炎症发生过程中扮演着关键角色,同时还参与到了癌症、HIV和COVID-19的发病过程中,尽管其作为一种药物靶点非常重要,但CCR5的分子激活机制,即趋化因子饥激动剂如何通过受体来传递激活信号,目前研究人员并不清楚。位于许多免疫细胞表面的趋化因子受体在细胞功能发挥上扮演着关键角色,而趋化因子是一类能结合这些受体并控制白细胞运动和行为的小型蛋白。
尽管该趋化因子受体家族非常重要,但研究人员并不清楚其被激活的机制,近日,一篇刊登在国际杂志Science Advances上题为“Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist”的研究报告中,来自瑞士巴塞尔大学等机构的科学家们通过研究成功解析了CCR5受体的激活机制,相关研究结果或为深入理解趋化因子受体的生物学特性迈出了重要一步,也为开发针对这一重要受体家族的新型药物提供了新的思路和希望。
CCR5在机体炎症和免疫防御功能发挥上扮演着关键角色,长期以来其一直被认为是开发抗HIV药物的重要靶点,研究者Stephan Grzesiek解释道,我们对CCR5的研究要追溯到25年前,其是抗击AIDS重要的一部分;同时其的确也是HIV感染机制的重要基础,但其在许多其它病理学过程中似乎也非常重要,特别是癌症和炎性疾病。然而,为了深入利用CCR5进行治疗目的,我们就需要在原子水平上理解如何通过与其趋化因子结合从而发挥激活作用。
[6P4]CCL5•CCR5•Fab16复合体的冷冻电镜结构。图片来源:Polina Isaikina,et al. Science Advances 16 Jun 2021: Vol. 7, no. 25, eabg8685 DOI: 10.1126/sciadv.abg8685。
截止到目前为止,对这一现象的研究一直受到了阻碍,因为研究人员很难观察到该受体与激活它的分子结合时的3D结构,为此,研究人员就利用低温冷冻电镜技术进行了相关研究,该技术能保存并观察生物体内的最小元素结构;为了理解整个过程,研究人员非常有必要利用与受体结合且比天然受体更加稳定的工程化趋化因子,为此研究人员就能利用在HIV药物研究过程中所发现的分子,而事实上,这些突变体会过度激活受体,而另一些则会完全阻断这些受体的功能。
嵌入到细胞膜中的受体就好像“锁子和钥匙”的机制一样发挥作用,趋化因子结构的一个特定部分必须适应CCR5锁来激活受体结构的变化,随后就会诱发白细胞的激活和迁移,趋化因子的激活能力受到了特定氨基酸的影响,这些氨基酸必须以特定的模式进行排列;而如果趋化因子的这部分采用了直线形状,其就能够成功激活受体的表达;但如果氨基酸被改变,分子就会采用略微不同的形状,尽管其与受体保持着非常牢固的结合作用,但却会阻断它的激活,因此这些微小的改变就会使得受体激活剂和抑制剂之间存在一定的差异。
copyright© 版权所有,未经许可不得复制、转载或镜像
京ICP证120392号 京公网安备110105007198 京ICP备10215607号-1 (京)网药械信息备字(2022)第00160号