Defects in 15-HETE Production and Control of Epithelial Permeability by Human Enteric Glial Cells From Patients With Crohns Disease Camille Pochard,Sabrina Coquenlorge,Julie JaulinNicolas Cenac,Natha
Camille Pochard∗,Sabrina Coquenlorge∗,Julie JaulinNicolas Cenac,Nathalie Vergnolle,Guillaume Meurette,Marie Freyssinet,Michel Neunlist,Malvyne Rolli-Derkinderen
Enteric glial cells (EGCs) produce soluble mediators that regulate homeostasis and permeability of the intestinal epithelial barrier (IEB). We investigated the profile of polyunsaturated fatty acid (PUFA) metabolites produced by EGCs from rats and from patients with Crohn’s disease (CD), compared with controls, along with the ability of one of these metabolites, 15-hydroxyeicosatetraenoic acid (15-HETE), to regulate the permeability of the IEB.
We isolated EGCs from male Sprague-Dawley rats, intestinal resections of 6 patients with CD, and uninflamed healthy areas of intestinal tissue from 6 patients who underwent surgery for colorectal cancer (controls). EGC-conditioned media was analyzed by high-sensitivity liquid-chromatography tandem mass spectrometry to determine PUFA signatures. We used immunostaining to identify 15-HETE−producing enzymes in EGCs and tissues. The effects of human EGCs and 15-HETE on permeability and transepithelial electrical resistance of the IEB were measured using Caco-2 cells; effects on signal transduction proteins were measured with immunoblots. Levels of proteins were reduced in Caco-2 cells using short-hairpin RNAs or proteins were inhibited pharmacologically. Rats were given intraperitoneal injections of 15-HETE or an inhibitor of 15-lipoxygenase (the enzyme that produces 15-HETE); colons were collected and permeability was measured.
EGCs expressed 15-lipoxygenase-2 and produced high levels of 15-HETE, which increased IEB resistance and reduced IEB permeability. 15-HETE production was reduced in EGCs from patients with CD compared with controls. EGCs from patients with CD were unable to reduce the permeability of the IEB; the addition of 15-HETE restored permeability to levels of control tissues. Inhibiting 15-HETE production in rats increased the permeability of the IEB in colon tissues. We found that 15-HETE regulates IEB permeability by inhibiting an adenosine monophosphate−activated protein kinase and increasing expression of zonula occludens-1.
Enteric glial cells from patients with CD have reduced production of 15-HETE, which controls IEB permeability by inhibiting adenosine monophosphate−activated protein kinase and increasing expression of zonula occludens-1.
January 2016Volume 150, Issue 1, Pages 168–180
copyright© 版权所有,未经许可不得复制、转载或镜像
京ICP证120392号 京公网安备110105007198 京ICP备10215607号-1 (京)网药械信息备字(2022)第00160号