老年医学

人工智能 可提前两年预测阿尔兹海默

作者:伊文 来源:今日科学 日期:2017-09-01
导读

         麦吉尔大学的人工智能研究成果,用不了多久就可以让世界各地的临床医生在临床中使用。 道格拉斯心理健康大学研究所的、McGill 神经影像实验室的科学家,使用人工智能技术和大数据开发了一种算法,能够在发病前两年,准确识别出痴呆症的症状。 使用单次淀粉样蛋白 PET 影像,扫描患有脑部风险的、可能发展成阿尔茨海默病的患者。他们的研究结果出现在《Neurobiology of Aging》杂志上发表的一

关键字:  阿尔兹海默 

        麦吉尔大学的人工智能研究成果,用不了多久就可以让世界各地的临床医生在临床中使用。

        道格拉斯心理健康大学研究所的、McGill 神经影像实验室的科学家,使用人工智能技术和大数据开发了一种算法,能够在发病前两年,准确识别出痴呆症的症状。

        使用单次淀粉样蛋白 PET 影像,扫描患有脑部风险的、可能发展成阿尔茨海默病的患者。他们的研究结果出现在《Neurobiology of Aging》杂志上发表的一项新研究中。

        McGill 神经外科和精神病学部门的研究副教授兼首席研究员 Pedro Rosa-Neto 博士预计,这种技术将改变医生管理患者的方式,并大大加速阿尔茨海默病的治疗研究。

        “目前,临床试验只能关注在研究的时间范围内,更有可能发展成痴呆症的个体,通过使用这个方法,将大大降低进行这些研究所需的成本和时间。”麦吉尔神经外科教授 Serge Gauthier 博士补充说。

        淀粉样蛋白作为检测痴呆的标志物

        科学家早已知晓被称为淀粉样蛋白的蛋白质,会积累在患有轻度认知障碍(MCI)患者的脑部,这种情况常常导致痴呆。

        虽然在痴呆症状发生前几十年中,淀粉样蛋白一直在积累,但由于不是所有的 MCI 患者都会发生阿尔茨海默病,因此该蛋白质不能可靠的被用作预测性生物标志物。

        为了进行研究,麦吉尔研究人员利用了阿尔茨海默病神经影像学计划(ADNI)提供的数据,这项全球研究工作需患者同意,并完成各种成像和临床评估。

        来自 Rosa-Neto 和 Gauthier 团队的计算机科学家 Sulantha Mathotaarachchi,使用数百个来自 ADNI 数据库的 MCI 患者的淀粉样蛋白 PET 扫描,来训练团队的算法,以鉴定哪些患者会发生痴呆,症状发作前的准确率为 84%。

        他们也在研究中,试图寻找可以纳入该算法的其他痴呆生物标志物,以提高软件的预测能力。

        麦吉尔大学老龄研究中心主任罗莎 - 内托博士(Dr. Rosa-Neto)说:“这是数据和开放科学大数据,为疾病预防和治疗最切实的一个例子。

        虽然新的软件已经在线提供给科学家和医生,但在医疗机构认证之前,医生无法在临床实践中使用此工具。

        为此,McGill 团队正在进行进一步测试,以验证不同患者队列中的算法,特别是那些具有并发条件如轻微脑中风的算法。

分享:

相关文章

评论

我要跟帖
发表
回复 小鸭梨
发表

copyright©金宝搏网站登录技巧 版权所有,未经许可不得复制、转载或镜像

京ICP证120392号  京公网安备110105007198  京ICP备10215607号-1  (京)网药械信息备字(2022)第00160号
//站内统计 //百度统计 //谷歌统计 //站长统计
*我要反馈: 姓    名: 邮    箱:
Baidu
map