首页>>  请登录,我要注册

心血管

CXCR4拮抗剂AMD3100通过eNOS依赖的机制促进心肌再灌注损伤后心脏功能的恢复

作者:张婷婷 编译 来源: 日期:2012-12-03
导读

         CXCR4拮抗剂AMD3100通过eNOS依赖的机制促进心肌再灌注损伤后心脏功能的恢复

CXCR4 Antagonist AMD3100 Promotes Cardiac Functional Recovery After Ischemia-Reperfusion Injury via eNOS-Dependent Mechanism

Kentaro Jujo; Masaaki Ii; Haruki Sekiguchi; Ekaterina Klyachko; Sol Misener; Toshikazu Tanaka; Jörn Tongers; Jérôme Roncalli; Marie-Ange Renault; Tina Thorne; Aiko Ito; Trevor Clarke; Christine Kamide; Yukio Tsurumi; Nobuhisa Hagiwara; Gangjian Qin; Michio Asahi; Douglas W. Losordo

CIRCULATIONAHA.112.099242

Published online before print November 30, 2012

Abstract

Background—CXC-chemokine receptor 4 (CXCR4) regulates the retention of stem/progenitor cells in the bone marrow (BM), and the CXCR4 antagonist AMD3100 improves recovery from coronary-ligation injury by mobilizing stem/progenitor cells from the BM to the peripheral blood. Thus, we investigated whether AMD3100 also improves recovery from ischemia-reperfusion (IR) injury, which more closely mimics myocardial infarction in patients, because blood flow is only temporarily obstructed.

Methods and Results—Mice were treated with single subcutaneous injections of AMD3100 (5 mg/kg) or saline after IR injury. Three days later, histological measurements of the infarct-area/area-at-risk ratio were smaller in AMD3100-treated mice than in mice administered saline, and echocardiographic measurements of left-ventricular function were greater in the AMD3100-treated mice at week 4. CXCR4+ cells were mobilized for just 1 day in both groups, but the mobilization of sca1+/flk1+ cells endured for 7days in AMD3100-treated mice compared to just 1 day in the saline-treated mice. AMD3100 upregulated BM levels of endothelial nitric oxide synthase (eNOS) and two targets of eNOS signaling, matrix-metalloproteinase 9 and soluble Kit ligand. Furthermore, the loss of BM eNOS expression abolished the benefit of AMD3100 on sca1+/flk1+ cell mobilization without altering the mobilization of CXCR4+ cells, and the cardioprotective effects of AMD3100 were retained in eNOS-knockout mice that had been transplanted with BM from wild-type mice, but not in wild-type mice with eNOS-knockout BM.

Conclusions—AMD3100 prolongs BM progenitor mobilization and improves recovery from IR injury, and these benefits appear to occur through a previously unidentified link between AMD3100 and BM eNOS expression.
 

分享:

相关文章

评论

我要跟帖
发表
回复 小鸭梨
发表

copyright© 版权所有,未经许可不得复制、转载或镜像

京ICP证120392号  京公网安备110105007198  京ICP备10215607号-1  (京)网药械信息备字(2022)第00160号
//站内统计 //百度统计 //谷歌统计 //站长统计
*我要反馈: 姓    名: 邮    箱:
Baidu
map